disordered sequence in any one tunnel. Crystals of the composition $\mathrm{Na}_{0.5} \mathrm{~V}_{6} \mathrm{O}_{15}$ give no diffuse spectra by which this may be assessed, but single crystals of $\mathrm{Ba}_{2-x} \mathrm{Ti}_{8} \mathrm{O}_{16}$, which is isomorphous with hollandite, offer additional evidence which is being investigated both by X-ray diffraction and dielectric absorption measurements.

References

Aebi, F. (1948). Helv. chim. Acta, 31, 8.
Buerger, M. J. (1947). J. Chem. Phys. 15, 1.
Buerger, M. J. (1954). Amer. Min. 39, 600.
Byström, A. \& Byström, A. M. (1950). Acta Cryst. 3, 146.

Byström, A. \& Byström, A. M. (1951). Acta Cryst. 4, 469.

Byström, A., Wilhelmi, K. A. \& Brotzen, O. (1950). Acta chem. scand. 4, 1119.
Christ, C. L., Clari, J. R. \& Evans, H. T. (1954). Acta Cryst. 7, 801.
Clastre, J. \& Gay, R. (1950). J. Phys. Radium, 11, 75.
Evans, H. T. \& Block, S. (1954). Amer. Min. 39, 327. (Abstract.)

Flood, H. \& Sörum, H. (1943). Tidsskr. Kjemi, Berg vesen Met. 5, 55.
Hägg, G. (1935). Z. Kristallogr. 91, 114.
Hoard, J. L. (1939). J. Amer. Chem. Soc. 61, 1252.
International Tables for X-ray Crystallography (1952). Birmingham: Kynoch Press.
Lipson, H. \& Cochran, W. (1953). The Crystalline State, vol. III, p. 172. London: Bell.
Magnéli, A. (1949). Ark. Kemi, 1, 223.
Magnéli, A. (1952). Nature, Lond. 169, 791.
Magneli, A. \& Blomberg, B. (1951). Acta chem. scand. 5, 372.
Magnéli, A. \& Oughton, B. M. (1951). Acta chem. scand. 5, 581.
Prandti, W. (1905). Ber. dtsch. chem. Ges. 38, 657.
Qurashi, M. M. (1954). Acta Cryst. 7, 310.
Qurashi, M. M. \& Barnes, W. H. (1953). Amer. Min. $38,489$.
Schlenk, W. (1949). Liebigs Ann. 565, 204.
Scmeenk, W. (1951). Fortschr. Chem. Forsch. 2, 92.
Smiti, A. E. (1952). Acta Cryst. 5, 224.
Sörum, H. (1943). K. norske vidensk. Selsk. Fork. 16, 39.

Viervoll, H. \& Ögrim, O. (1949). Acta Cryst. 2. 277. Wadsley, A. D. (1953). Acta Cryst. 6, 433.

Polarization Correction for Crystal-Monochromatized X-radiation*

By Leonid V. Azaroff
Armour Research Foundation of Illinois Institute of Technology, Technology Center, Chicago 16, Illinois, U.S.A.

(Received 3 January 1955 and in revised form 14 June 1955)

Abstract

The polarization correction for diffraction of a crystal-monochromatized X-ray beam is derived. Suitable expressions for different experimental methods are also given. The polarization correction is first tabulated in parts so that the appropriate correction for any wavelength and monochromator rystal can be determined. Another table lists selected values of the polarization correction, in a final form, for different wavelength X-radiations reflected from (1011) planes of a quartz monochromator. The maximum correction for $\mathrm{Ag} K \alpha$ is a little more than 1%, whereas for $\mathrm{Cr} K \alpha$ the maximum correction is 34%.

1. Polarization factor

The use of crystal-monochromatized X-radiation has many advantages over conventional methods using filters. Of greatest importance is the virtual elimination of background scattering due to non-characteristic radiation. Furthermore, it is possible to use a bentcrystal monochromator to obtain integrated intensities photographically, as will be shown in a subsequent communication. The chief objection to the use of crystal monochromators, the intensity decrease in the twice diffracted beam, can be minimized by suitable

[^0]choice of monochromator crystal and X-radiation. Thus, single-crystal photographs of inorganic compounds made in the author's laboratory with Ag Ka diffracted from ($10 \overline{1} 1$) planes of a quartz monochromator have intensities directly comparable with similarly exposed photographs prepared with a conventionally filtered beam.

Whenever crystal-monochromatized X-radiation is used, the beam striking the specimen crystal is partially polarized owing to reflection by the monochromator crystal. The polarization factor for the twice diffracted beam is different, therefore, from the relation, $\frac{1}{2}\left(1+\cos ^{2} 2 \theta\right)$, normally used. In order to determine the appropriate polarization factor, consider Fig. 1. The intensity of an unpolarized X-ray beam

Fig. 1.
can be considered as the sum of two equal parts due to independent components in two orthogonal directions of polarization:

$$
\begin{equation*}
I_{0}=I_{\sigma}+I_{\pi} \tag{1}
\end{equation*}
$$

or

$$
\frac{1}{2} I_{0}=I_{\sigma}=I_{\pi},
$$

where σ indicates the component in the plane of incidence, and π the component normal to it. Using the amplitudes of the optical field, equation (1) can be alternatively written

$$
\begin{equation*}
\frac{1}{2} E_{0}^{2}=E_{\sigma}^{2}=E_{\pi}^{2} \tag{2}
\end{equation*}
$$

The σ component can be considered first. This component is reflected by the monochromator planes, P_{1}, (whose normal, n_{1}, lies in the $y z$ plane) along the y^{\prime} direction (also lying in the $y z$ plane) which is inclined by $2 \theta_{1}$ to y. After reflection, the σ component becomes

$$
\begin{equation*}
E_{\sigma}^{\prime}=k E_{\sigma} \cos 2 \theta_{1} \tag{3}
\end{equation*}
$$

where $k=e^{2} / m c^{2} r$ and contains all the factors which are independent of the direction of polarization. Referring this component to the primed coordinates, it lies in the $y^{\prime} z^{\prime}$ plane and is parallel to z^{\prime}.

This component is next reflected by the specimen crystal planes, P_{2}, along $y^{\prime \prime}$ which is inclined by $2 \theta_{2}$ to y^{\prime}. (The normal, n_{2}, of these planes may be inclined to x^{\prime}, y^{\prime} and z^{\prime}.) The effect on E_{σ}^{\prime} of the second reflection can be studied best by resolving E_{σ}^{\prime} along two mutually perpendicular directions, viz. one along the plane P_{2}, and one along n_{2}^{\prime}, the projection of the normal n_{2} on the $x^{\prime} z^{\prime}$ plane. If n_{2}^{\prime} lies at an angle ϱ away from the z^{\prime} axis, the two components are:

Along the normal: $E_{\sigma n}^{\prime}=E_{\sigma}^{\prime} \cos \varrho$.
Along the plane: $E_{\sigma p}^{\prime}=E_{\sigma}^{\prime} \sin \varrho$.
The normal component is attenuated by the cosine of the reflection angle, $2 \theta_{1}$, while the component along the plane is not attenuated, i.e.

$$
\begin{equation*}
E_{\sigma n}^{\prime \prime}=k^{\prime} E_{\sigma n}^{\prime} \cos 2 \theta_{2} \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
E_{\sigma p}^{\prime \prime}=k^{\prime} E_{\sigma p}^{\prime} \tag{6}
\end{equation*}
$$

Similarly, the π component, after reflection by the planes, P_{1}, is not affected, i.e.

$$
\begin{equation*}
E_{\pi}^{\prime}=k E_{\pi} \tag{7}
\end{equation*}
$$

Resolving E_{π}^{\prime} along the same two perpendicular directions used for resolving E_{σ}^{\prime}, the two components are:
$\left.\begin{array}{ll}\text { Along the normal: } & E_{\pi n}^{\prime}=E_{\pi}^{\prime} \sin \varrho . \\ \text { Along the plane: } & E_{\pi p}^{\prime}=E_{\pi}^{\prime} \cos \varrho .\end{array}\right\}$
The normal component is changed and the component along the plane is not, so that
and

$$
\left.\begin{array}{l}
E_{\pi n}^{\prime \prime}=k^{\prime} E_{\pi n}^{\prime} \cos 2 \theta_{2} \tag{9}\\
E_{\pi p}^{\prime \prime}=k^{\prime} E_{\pi p}^{\prime}
\end{array}\right\}
$$

(k^{\prime} has the same meaning for the second crystal as k had for the first.)
The resultant contribution of the σ component to the intensity

$$
\begin{equation*}
\overline{E_{\sigma}^{\prime \prime}}=\overline{E_{\sigma n}^{\prime \prime}}+\overline{E_{\sigma p}^{\prime \prime}} \tag{10}
\end{equation*}
$$

and of the π component,

$$
\begin{equation*}
\overline{E_{\pi}^{\prime \prime}}=\overline{E_{\pi n}^{\prime \prime}}+\overline{E_{\pi p}^{\prime 2}} \tag{li}
\end{equation*}
$$

can be added to give the resultant contribution from both components:

$$
\begin{equation*}
\overline{E^{\prime \prime}}{ }^{2}=\overline{E_{\sigma}^{\prime \prime}}+\overline{E_{\pi}^{\prime \prime}}{ }^{2}=\overline{E_{\sigma n}^{\prime \prime}}+\overline{E_{\sigma p}^{\prime \prime}}+\overline{E_{\pi n}^{\prime \prime}}+\overline{E_{\pi p}^{\prime \prime}}{ }^{2} \tag{12}
\end{equation*}
$$

After making appropriate substitutions for each term,
${\overline{E^{\prime \prime}}}^{2}=\frac{1}{2} k^{2} k^{\prime 2} \bar{E}_{0}^{2}\left[\left(\cos ^{2} 2 \theta_{1} \cos ^{2} \varrho+\sin ^{2} \varrho\right) \cos ^{2} 2 \theta_{2} \div\right.$

$$
\begin{equation*}
\left.\left(\cos ^{2} 2 \theta_{1} \sin ^{2} \varrho+\cos ^{2} \varrho\right)\right] \tag{13}
\end{equation*}
$$

The final intensity is expressed in terms of the intensity just before the second reflection,

Table 1. Bragg angles $\left(\theta_{1}\right)$ for ($\mathbf{1 0} \overline{1} 1$) planes of quartz

	Wavelength		
Radiation \dagger	(\AA)	$\theta_{1}\left({ }^{\circ}\right)$	$\cos ^{2} 2 \theta_{1}$
$\mathrm{Ag} K \alpha^{*}$	0.561	4.8	0.9722
$\mathrm{Mo} K \alpha^{*}$	0.711	6.1	0.9553
$\mathrm{Cu} K \alpha^{*}$	1.542	13.3	0.7995
$\mathrm{Fe} K \alpha^{*}$	1.937	16.6	0.6905
$\mathrm{Cr} K \alpha^{*}$	2.291	19.8	0.5937

\dagger The wavelength of $K \alpha^{*}$ is computed according to the relation

$$
K \alpha^{*}=\frac{1}{3}\left(2 K \alpha_{1}+K \alpha_{2}\right)
$$

Table 2. $\Sigma_{1}=\left(\cos ^{2} \varrho \cos ^{2} 2 \theta_{2}+\sin ^{2} \varrho\right)$ and $\Sigma_{2}=$ $\left(\sin ^{2} \varrho \cos ^{2} 2 \theta_{2}+\cos ^{2} \varrho\right)$ as a function of θ_{2} and ϱ

$2 \theta_{2}\left({ }^{\circ}\right)$	$\varrho\left({ }^{\circ}\right)$	Σ_{1}	Σ_{2}
0, 180	0, 180	1	1
	10, 170	1	1
	20, 160	1	1
	30, 150	1	1
	40, 140	1	1
	50, 130	1	1
	60, 120	1	1
	70, 110	1	1
	80, 100		1
	90, (270)	1	1
10, 170	0, 180	0.9698	1
	10, 170	0.9707	0.9991
	20, 160	0.9733	0.9965
	30, 150	0.9774	0.9924
	40, 140	0.9823	0.9875
	50, 130	0.9875	0.9823
	60, 120	0.9924	0.9774
	70, 110	0.9965	0.9733
	80, 100	0.9991	0.9707
	90, (270)	1	0.9698
20, 160	0, 180	0.8830	1
	10, 170	0.8865	0.9965
	20, 160	0.8967	0.9863
	30, 150	0.9122	0.9708
	40, 140	0.9313	0.9517
	50, 130	0.9517	0.9313
	60, 120	0.9708	0.9122
	70, 110	0.9863	0.8967
	80, 100	0.9965	0.8865
	90, (270)	1	0.8830
30, 150	0, 180	0.7500	1
	10, 170	0.7576	0.9925
	20, 160	0.7792	0.9708
	30, 150	0.8125	0.9375
	40, 140	0.8533	0.8967
	50, 130	0.8967	0.8533
	60, 120	0.9375	0.8125
	70, 110	0.9708	0.7792
	80, 100	0.9925	0.7576
	90, (270)	1	0.7500
40. 140	0, 180	0.5868	1
	10, 170	0.5993	0.9875
	20, 160	0.6351	0.9517
	30, 150	0.6901	0.8967
	40, 140	0.7575	0.8293
	50, 130	0.8293	0.7575
	60, 120	0.8967	0.6901
	70, 110	0.9517	0.6351
	80, 100	0.9875	0.5993
	90, (270)	1	0.5868

Table 2 (cont.)
$2 \theta_{2}\left({ }^{\circ}\right)$
50,130

$\varrho\left({ }^{\circ}\right)$	Σ_{1}	Σ
0,180	0.4132	
10,170	0.4309	0.9

10,170	0.4309	0.9823
20,160	0.4819	0.9313
30,150	0.5599	0.8533

$\mathbf{4 0 , 1 4 0}$	$\mathbf{0 . 6 5 5 7}$	$\mathbf{0 . 7 5 7 5}$
50,130	0.7575	$\mathbf{0 . 6 5 5 7}$

60,120	0.8533	0.5599
70,110	0.9313	0.4819
80,100	0.9823	0.4309

60, 120

0,180	0.22000
10,170	0.2726
20,160	0.3378
30,150	0.4375
40,140	0.5599
50,130	0.6901
60,120	0.8125
70,110	0.9122
80,100	0.9774
$90,(270)$	1

$90,(270)$
0,180
70,110

0,180	0.1170	1
10,170	0.1436	0.9733
20,160	0.2203	0.8967
30,150	0.3377	0.7792
40,140	0.4818	0.6351
50,130	0.6351	0.4818
60,120	0.7792	0.3377
70,110	0.8967	0.2203
80,100	0.9733	0.1436
$90,(270)$	1	0.1170

80,100
0,180
10,170
20,160
30,150
40,140
50,130
60,120
70,110
80,100
$90,(270)$

0.0302	1
0.0595	0.9707
0.1437	0.8865
0.2727	0.7576
0.4309	0.5993
0.5993	0.4309
0.7576	0.2727
0.8865	0.1437
0.9707	0.0595
1	0.0302
0	1
0.0302	0.9698
0.1170	0.8830
0.2500	0.7500
0.4132	0.5868
0.5868	0.4132
0.7500	0.2500
0.8830	0.1170
0.9698	0.0302
1	0

$I=K I^{\prime} \times$
$\left\{\frac{\left(\cos ^{2} 2 \theta_{1} \cos ^{2} \varrho+\sin ^{2} \varrho\right) \cos ^{2} 2 \theta_{2}+\cos ^{2} 2 \theta_{1} \sin ^{2} \varrho+\cos ^{2} \varrho}{1+\cos ^{2} 2 \theta_{1}}\right\}$,
where the quantity in brackets is the polarization factor for a twice diffracted X-ray beam.

2. Polarization correction

The final expression for the polarization correction depends on the experimental arrangement used. For

Table 3. Polarization factor p^{\prime}, and polarization correction p / p^{\prime}, as a function of θ_{2} and ϱ, for selected X-radiations ($\cos ^{2} 2 \theta_{1}$ values as listed in Table 1.)

$2 \theta_{2}\left({ }^{\circ}\right)$	$\underline{0}$ (${ }^{\circ}$	Ag $K \alpha^{*}$		Mo $K \alpha^{*}$		$\mathrm{Cu} K \alpha^{*}$		Fe $K \alpha^{*}$		$\mathrm{Cr} K \alpha^{*}$	
		p^{\prime}	p / p^{\prime}								
0, 180	90	1	1	1	1	1	1	1	1	1	1
30, 150	90	0.8732	1.0021	0.8721	1.0033	0.8611	1.0161	0.8521	1.0268	0.8431	1.0378
60, 120	90	0.6197	1.0085	0.6164	1.0139	0.5832	1.0716	0.5563	1.1234	0.5294	1-1805
90, (270)	90	0.4929	1-0144	0.4885	1.0235	0.4443	1-1253	0.4085	1.2240	0.3725	1.3423

the powder method, $\varrho=0$ provided that the intensities are measured along the plane of incidence, and that the specimen rotation axis is parallel to the reflecting planes of the monochromator crystal. In this case, the correct expression for the polarization factor is

$$
\begin{equation*}
\frac{1+\cos ^{2} 2 \theta_{1} \cos ^{2} 2 \theta_{2}}{1+\cos ^{2} 2 \theta_{1}} . \tag{15}
\end{equation*}
$$

If the rotation axis is inclined, the more general equation (14) must be used.
The correct expression for the normal-beam method (rotation, oscillation or Weissenberg arrangements) is given by equation (14) where $\varrho=\boldsymbol{\nu}$ (constant for any level). For the zero level $\varrho=\nu=0$ and equation (14) reduces to equation (15). For the equi-inclination method the determination of ϱ is more complicated and would have to be made, individually, for each reflection of every crystal.

Since ϱ is the angle between the projection of the normal to the reflecting plane (on to a plane perpendicular to the incident monochromatized X-ray beam) and the plane of incidence, it can be measured directly on the film in the Buerger precession method. Furthermore, θ_{2} varies radially on the film, and also can be measured directly. Owing to these simple geometrical relations between ϱ, θ_{2} and the position of the reciprocal lattice points photographed by the Buerger precession method, it is convenient to prepare a chart of the polarization correction on the same scale as the film.

There is one other unknown in (14), viz. the angle $\left(\theta_{1}\right)$ of the first reflection of the X-ray beam. This angle is a function of the monochromator crystal and the wavelength of the radiation selected. Quartz crystals cut parallel to ($\mathbf{1 0} \overline{1} 1$) make satisfactory monochromators for most wavelengths. Table 1 lists values of the Bragg angle, θ_{1}, for the wavelengths commonly used.

The expression for the polarization factor is the bracket in equation (14).
Let
$\left(\cos ^{2} \varrho \cos ^{2} 2 \theta_{2}+\sin ^{2} \varrho\right)=\Sigma_{1}$ and

$$
\left(\sin ^{2} \varrho \cos ^{2} 2 \theta_{2}+\cos ^{2} \varrho\right)=\Sigma_{2}
$$

then the polarization factor becomes

$$
\begin{equation*}
\frac{1}{1+\cos ^{2} 2 \theta_{1}}\left(\cos ^{2} 2 \theta_{1} \Sigma_{1}+\Sigma_{2}\right) \tag{16}
\end{equation*}
$$

Since the polarization factor depends on the value of θ_{1} selected, but Σ_{1} and Σ_{2} are independent of θ_{1}, Table 2 lists the values of Σ_{1} and Σ_{2} separately. This table can be used, therefore, to compute the polarization correction for any experimental arrangement.

The magnitude of the structure factors is related to the experimentally determined intensity by the relation

$$
\begin{equation*}
|F|^{2}=I(\mathbf{l} / L p) . \tag{17}
\end{equation*}
$$

Since charts plotting $1 / L p$ for the Buerger precession method have been published (Waser, 1951 ; GrenvilleWells \& Abrahams, 1952) it is convenient to prepare similar charts by plotting the reciprocal of (16) multiplied by the conventional polarization factor. If the polarization factor for a twice diffracted beam is denoted by p^{\prime}, equation (17) can be written

$$
\begin{equation*}
|F|^{2}=I \times \frac{1}{L p} \times \frac{p}{p^{\prime}}=I \times \frac{1}{L} \times \frac{1}{p^{\prime}} . \tag{18}
\end{equation*}
$$

Table 3 lists the polarization correction, p / p^{\prime}, for selected values of θ_{2} and ϱ, for several X-radiations monochromatized by reflection from the ($10 \overline{1} 1$) planes of quartz. This table is included to indicate the magnitude of this correction, which is negligible for $\mathrm{Ag} K \alpha$ but attains a maximum value of 34% for Cr $K \alpha$. Complete tables for the radiations listed in Table 3 are in preparation.

Thanks are due to Prof. B. E. Warren for verifying equation (13) and suggesting the form of equation (14). Thanks are also due to Miss I. Corvin and Miss E. Stenzel for preparing Table 2.

References

Grenville-Wells, H. J. \& Abrafams, S. C. (1952). Rev. Sci. Instrum. 23, 328.
Waser, J. (1951). Rev. Sci. Instrum. 22, 567.

[^0]: * This research was supported by the United States Air Force, through the Office of Scientific Research of the Air Research and Development Command.

